Fall 2023

General Physics: Electromagnetism, Correction 10

Exercise 1 :

A conductive rod of length [, mass m and resistance R slides down on a vertical conductive frame
from the height H > [ in the presence of homogeneous magnetic field B which is perpendicular to
the frame (Figure 1). Estimate:

a) Kinetic energy of the rod, when it hits the grass.

b) How much heat energy W was delivered in the rod?
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Figure 1: Conductive rod sliding down a conductive frame in a homogeneous magnetic field.



Solution 1 :

a) The frame and the rod together make a conductive loop. Moreover, the rod is falling down
with a velocity v(t) due to gravitational force. As a result, when the rod falls down, the loop
area increases.

The magnetic flux through the loop increases as well and, by Faraday’s law, an e.m.f. € and
a current [;,q will be induced in the loop.

Iing = % (1)

It creates a magnetic field which is going into the sheet inside the loop. Since now there is
a current flowing in the rod, it will experience a Lorenz force because of the static field B.
This force F}, is directed upward and it is going in the opposite direction of the gravitational
force.

Since H > [, we can safely assume that before the rod hits the surface, the magnetic force
has time to increase and to equilibrate the gravitational force. When this happens, the rod
will finish its fall with a constant velocity vy.

The gravitational force Fy, is given by the equation 2.

Foo =m - g (2)

And the magnetic force on a straight wire is given by the formula 3.

Fp=B-1-1 (3)

As the two previous forces equilibrate, we have:

Fy = —Fy (4)
m-qg=—B "Iyl (5)
Using Lenz’s law, we get :
€ 1  dop 1 d B vy -1
lygy=—-=-—— -—=——.—(B - toD=—="T1 °
"CRTR @ mR alu D R (©)
Where we used that the area in which the magnetic field goes (inside the loop) is :
A= Uy - t-1 (7)
Therefore,
B?* v - 2 m-g-R
m-g = = SV = (8)
When the rod hits the ground, its kinetic energy is :
1 , m3-g? - R
Ekin=§'m'vf=m (9)
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b) Without the magnetic field, the kinetic energy FEy;, of the rod at the surface would be :

By =m - g - H (10)
Therefore, the difference Ej, -Ej;,, =W gives the delivered heat:
m3 . g2 . RQ

Exercise 2 :

A square b x b = 5 x 5 cm conductive frame is moved by an external force with constant velocity
v =1 m/s through the area of width d = 20 cm of homogeneous magnetic field B = 1 T, which is
orthogonal to v (see Figure 2). The external work required to pass the field was W = 2.5-1073 J.
What is the resistance R of the frame?
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Figure 2: Conductive frame moved by an external force with constant velocity in a homogeneous
magnetic field.

Solution 2 :

Let’s start by considering that the frame must move at a constant speed; from Newton’s law,
the resulting force that acts on the frame at any time must be equal to 0:

Zﬁ:md':() (12)

By Lenz’s law there’s a magnetic force which acts on the frame when the flux of magnetic field
going through the frame area changes: this happens only while the frame goes in and out from the
magnetic field, in both cases for a length x = b. Pay attention that while the frame is completely
inside the magnetic field, there will be a flux of magnetic field, but this will not generate any force
as this value is constant.

Let’s now see how we can compute this magnetic force and let’s think on its direction. The
induced € will reduce the change of magnetic flux. Intuitively, we can conclude that while the
frame gets in the magnetic field, the force will push the frame out, pointing to the left in the
previous drawing. While the frame goes out, the force will push it inside, pointing always in the



left direction. In both cases the force is opposite to the movement of the frame. The induced e will
generate a current according to the Ohm’s law:

1 dop

I=—5—" (13)

bp = /d§§ = BA(t)cos(0) = Bbx = Bb(vt) (14)
1

I =~ Bbv (15)

where the magnetic field is constant over time as the angle between the magnetic field and the
area ( @ = 0). The area in this case is the quantity which changes over time, and x is the amount
of frame which is inside the magnetic field (in the direction parallel to the velocity).

The direction of this current is such to generate an induced magnetic field (generated by the
wire itself) which will try to reduce the external one (again as a consequence of the Lenz law! this
is just another way of seeing it). While the wire gets in, the magnetic field generated by the wire
must point down in the previous drawing, thus the current in the wire must flow clockwise.

From previous lectures, we know that a wire where current flows inserted in a magnetic field
will experience a force (as a generalization of the Lorentz Force):

—

Fmagn:Ifxg (16)

In our case three wires are inserted in the magnetic field as the force act (one of length b and two of
length x). By using the right hand rule and considering the direction of the current, the forces on
the two x-wires will cancel out. Only the force on the b-wire will act, pointing in the left direction.
This is the same result we have obtained in the intuitive picture above! On the other hand, when
the frame goes out the direction of the current will be anticlockwise, as it will try to increase the
external magnetic field as the flux is decreasing. Again the force on the wire will point to the left.
In the end, the force in these two cases is:

—

1
Fmagn - _EU(Bb>2 (17>

Thus, we have that in this region where the magnetic flux changes over time (2 times b), an
external force must balance the magnetic force and this will create a work. As in both cases the
external force is in the same direction of the movement (o = 0, is the angle between the external
force and the movement), the two contributes sum up:

Fmagn = _Fea:t
W = Win + Wour = Fopy2b = — Frpagn2b c0s(t) = — Fpagn2b (18)
R 20B2b?

=0.1Q

Exercise 3 :

Consider a conductive rod of mass m and resistance R that can freely slide along a horizontal
solid conductive frame of width w and length [, which is much longer than the width (Figure 3).



The homogeneous magnetic field B is orthogonal to the frame. The field is changing with time ¢
as B = Byt. In which direction and by what distance Al will the rod be displaced from its initial
position at t = 0 after a short time t = T', assuming that the displacement is small compared to [7
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Figure 3: Conductive rod sliding along a conductive frame in a homogeneous magnetic field.

Solution 3 :

Without doing any calculation we can immediately guess the direction of the magnetic force by
using the Lenz law: the induced magnetic force will have the effect of decreasing the magnetic flux
due to the external magnetic field B. We can think to this action in two ways: by decreasing the
loop area or by generating a magnetic field in the opposite direction to the external one. In both
the scenarios we conclude that the magnetic force must points to the left (and the induced current,
for the right-hand rule, must flow downward).

A more quantitative description of the process, valid for small displacements Al, can be achieved
by exploiting Faraday’s law:

t) = d D(t 19
c(t) =~ S () (19)

Where ¢(t) is the induced emf and ®(¢) is the time-varying magnetic flux. Since the magnetic
field is uniform and orthogonal to the covered area, the magnetic flux is simply given by ® = AB.
The most general expression for the magnetic flux in our problem is:

O(t) = wl(t)B(t) (20)

Where B = Byt is the time-varying magnetic field and [(¢) is the unknown displacement after
a time t. The crucial point is the information that the displacement is small compared to [, then
Al < [. Therefore, at zero-th order, we can approximate the covered area as constant in time.
Then the magnetic flux is simply:



O(t) = wiByt (21)
The induced emf is then:

d

The induced current is given by Ohm’s law:

9 wlBo
I=—=— 23
7 7 (23)
The "-" sign indicates that the current flows downward, according to what we deduced with
Lenz law. The magnetic force is simply the Lorentz force:
B2w?l
F@):1w3u):-?g ; (24)

The "-" sign confirms again what we deduced at the beginning, using the physical interpretation
of Lenz’s law, since it means that the force is pointing to the left. In order to conclude the exercise,
we use Newton’s second law, the acceleration is given by Fj,;, = ma:

B2w?l
= t 25
¢ mR (25)
The velocity is the integral of the acceleration:
B2w?l
= [ dt a(t) = = =042 26
v / a(t) omR (26)

Finally, Al is the integral of the velocity between 0 and the final time 7" (notice that the integral
of the acceleration is an indefinite integral, because we need to know the velocity at each instant
of time, so it is wrong to compute the velocity between 0 and 7" and perform a further integration
in order to find the displacement Al):

T B2w?l
Al= | dtov(t)=-—="=T3 27
| o - -2 (27)

REMARK: An exact description of the process can be obtained by writing down a differential
equation for the variable [(¢), indeed by using the time dependent magnetic flux:

O(t) = wi(t) Bot (28)

One obtain the emf:

e(t) = —wli(t)Bot + 1(t) Bo] (29)
This leads to the magnetic force F'(t) = I(t)wB(t) where I(t) = £(t)/R. By using Newton’s

second law Fy,; = ml (t) we obtain a differential equation for [(t):

imz—i§WW“MW] (30)
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This equation describes with great accuracy the motion of the rod, unfortunately is a highly
non-trivial differential equation. If we neglect the term with [t* we get:

2732
w*B§

l<t> - mR

Which is still hard to solve. In the limit of small displacements I(t) is constant and [(¢) is simply
the acceleration of the rod a, then:

1(t)t (31)

w?BEl
mR
Which is exactly what we obtained using immediately the information Al < [.

t (32)

a=—

Exercise 4 :

A solenoid S with a diameter D = 3.2 ¢cm has 200 turns/cm and carries a sinusoidal current
I = Iysin(2nft) (See Figure 5). In the center, we put a coil C' of 130 tight turns with a diameter
d = 2.1 ecm. The amplitude of the current is Iy = 1.5 A and the frequency is f = 50 Hz. What is
the amplitude of the em f induced in the coil C?
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Figure 4: Solenoid S with sinusoidal current containing a coil C'.

Solution 4 :

Since the coil C' is placed inside the solenoid, it feels the magnetic field produced by the current
I flowing in the solenoid S. We indicate the magnetic flux in the coil C' as ®%. When ®% changes, a
emf ¢ is induced in the coil C' thanks to Faraday’s law. Since the coil C' has N turns, the Faraday’s

law can be written as: e p

"B _ _NZIZ 33
dt dt’ (33)

where N = 130 and ®p is the magnetic flux across a single turn of C'. Since B is uniform and has

direction perpendicular to the surface A, the flux through each turn of the coil C'is 5 = BA. The

magnitude of the magnetic field B inside the solenoid depends on its current I and on its number

E =



of turns per meter n: B = poln = polonsin(27 ft). In this case, A = 17d? and n = 20000 turns,/m.
Therefore, we have:

1
by = BA= ,uolonzﬂdz sin(27 ft). (34)
and then we can write:
P 2
dd_tB = %uoloncﬁf cos(2m ft) = 4.52 x 1072 cos(27 f1). (35)

So, finally, the emf amplitude is:
2
le| = N?uofondQ f=058V (36)

Exercise 5 :

A circular loop of radius ry rotates with angular speed w in a fixed magnetic field as shown in
the Figure below.

a) Find an expression for the emf induced in the loop.

b) If the magnitude of the magnetic field is 25 uT, the radius of the loop is 1 cm, the resistance
of the loop is 25 2 and the rotation rate w is 3 rad/s, what is the maximum current in the
loop?

Figure 5: Circular loop rotating in a homogeneous magnetic field at an angular speed w.

Solution 5 :

a) We can find the emf, ¢, from Faraday’s law,

dd
- _ = 37
c dt’ (37)



where ® is the magnetic flux defined as,

<I>:/B-dS, (38)

with B the magnetic field and S the surface vector.
Let’s first compute the flux ®:

(IJ:/B-dS:|B|7rr§cosa, (39)

| B| denote the absolute value of B and a = wt is the angle between magnetic field and the
surface vector, we can then write.

® = |B| 7ri cosa = |B| wry cos (wt). (40)
The emf, ¢, is then
dd d
== |B| WT%E cos (wt) = |B|wnry sin (wt). (41)

b) We can then find the maximum current ., from Ohm’s law.

max B 2
Tae| = |‘€R [_ | ‘;WO — 9.4 %1070 A, (42)




